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A set of partial differential equations of the Navier-Stokes type is derived for 
external rarefied gas flows at all Knudsen numbers. Only the expressions of the 
stress tensor and heat flux vector are different from the customary Navier- 
Stokes relations and Fourier law. The new expressions are calculated from an 
approximate distribution function constructed through analysis of the BGK 
model of the Boltzmann equation so that it retains the qualitative property of the 
collision term and reproduces accurately the two extreme continuum and free- 
molecule regimes. Explicit forms of the stress tensor and heat flux components 
are given for low-speed two-dimensional flows. Solutions for vanishing Mach 
number and compressibility effects are then discussed. For a nearly isothermal 
cylinder, the present formulation leads to only one governing equation of the 
Navier-Stokes type for all flow regimes. 

1. Introduction 
Rarefied gas flows past solid bodies have recently been investigated by many 

authors because of their theoretical interest and obvious application to earth 
satellite experiments and upper atmosphere measurements. Starting from 
the Boltzmann equation, different approaches were devised to account for its 
rarefaction effects. Logically, rational simplifications are possible only in the 
limiting cases. For example, in the near-continuum regime, Tamada & Yama- 
mot0 (1967) used the linearized BGK equation to describe the flow pasb a circular 
cylinder a t  small Reynolds number and obtained first- and second-order terms. 
In  the other extreme of the nearly free-molecule regime Liu, Pang & Jew (1965) 
and later Willis (1965) employed the technique of Knudsen iteration to calculate 
the drag of a sphere. 

In  the transition regime, approximate schemes are invariably of an ad hoc 
nature. We cite here the work of Liu & Passamaneck (1967) and Liu & Sugimura 
(1969), who applied Lees’ moment method (Lees 1959) to rarefied flow past a 
cylinder and a sphere. Lees’ approach consists of dividing the phase space accord- 
ing to a line-of-sight principle and taking a different Maxwellian-type velocity 
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distribution function in each region to calculate the moments. Admirably simple 
this method has achieved wide popularity. It seems suitable as an approxima- 
tion for nearly free-molecule flows dominated by the geometric shadow effect. 
However, for moderate and small Knudsen numbers, there are regions in the 
flow where velocity and temperature gradient effects are relatively important and 
the distribution function might be poorly approximated by means of Maxwellian 
components. Above all, it does not give the correct continuum limit. Thus, in 
the case of a flow past a circular cylinder Liu & Passamaneck’s derivation of the 
drag formula seems to  be semi-empirical, and the velocity field, as well as the 
drag, does not exhibit the usual logarithmic behaviour one witnesses in the con- 
tinuum regime to any order. These details are lost because of the oversimplifica- 
tion. 

A satisfactory unified kinetic theory approach to the problem of an unbounded 
rarefied flow past a body, at all Knudsen numbers Kn, should contain a compre- 
hensive and smooth description of the transition of the velocity distribution 
function that is discontinuous near the boundary but tends to the Chapman- 
Enskog solution in the continuum limit at  large distances. With this feature in 
mind, Shen (1963, 1966) proposed a different approach, emphasizing in addition 
an extension of the customary hydrodynamic equations through modification 
of the constitutive relations (Navier-Stokes and Fourier law) as well as the bound- 
ary conditions. The rarefied gas is thus treated as a non-Newtonian fluid. In  
Shen’s theory the new constitutive relations and the boundary conditions are 
obtained from an approximate distribution function suggested by an analysis of 
the BGK model of the Boltzmann equation. The approximate form is constructed 
so that: (i) it reproduces accurately and smoothly the two extreme free-molecule 
and continuum regimes; (ii) the order of the new set of hydrodynamic equations 
is the same as that of the Navier-Stokes equations; (iii) it accounts for the 
geometry of the problem dealt with. Shen also gave a simple form of such a 
distribution function and the results of an application, due to Lo (1964), to the 
heat transfer between two parallel plates with a large temperature difference. 
Preliminary results using Shen’s approach to the problem of a flow past a circular 
cylinder were given by Atassi & Shen (1969). Later, Cercignani & Trioni 
(1969) proposed an extension of the Navier-Stokes equations with the sole 
modification on the boundary conditions. They borrowed the classical Maxwellian 
idea (Maxwell 1965) of evaluating the distribution function prevailing a t  one 
mean free path far from tho wall to describe the inner conditions. This is tanta- 
mount to  ‘patching’ the inner region (free-molecule like) solution directly to thab 
of the far-field continuum regime without taking any account of the behaviour 
in the transition region. As mentioned by these authors, because of the geometric 
shadow effect this approach is less accurate for two-dimensional than for three- 
dimensional flows. Besides, the proposed boundary conditions are very compli- 
cated and the approach appears to be less consistent than the one put forward by 
Shen. 

In part 1 of this paper, we develop Shen’s approach to derive a set of general- 
ized hydrodynamic equations for external rarefied gas flows. Later, we linearize 
the rarefied terms of these equations with respecb to velocity and give a full 
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discussion of compressibility effects for all rarefied gas regimes, based on the ex- 
plicit form of the stress tensor and heat flux vector for two-dimensional flows. 
In part 2, we treat the problem of a low-speed rarefied gas flow past a circular 
cylinder, giving a fuller account than that for our preliminary results. Asymptotic 
solutions for Kn < I and K n  9 1 are deduced using the method of matched 
asymptotic expansions, and are compared with other theories and known 
experimental data on the drag and heat-transfer coefficients. 

2. Construction of the approximate distribution function 

function we examine the BGK model of the Boltzmann equation 
To establish the essential features of a suitable approximate distribution 

dF/dt = - K (  F - I?(@), (1)  

where d/dt = (a/& + 5, V), P is the velocity distribution function, F(0) the cor- 
responding Maxwellian, K the collision frequency, and 5 stands for the mole- 
cular velocity vector. An integral form of (1) is given by 

F(t ,  x, 5) = W O ,  x - g(t - to), 5) E(t ,  to )  

+Jt: K (7, x- <(t - 7)) FCo) (7, x- F(t -T), g) E(t, 7) d7, (2) 

where x is the space co-ordinate vector, to and t are the initial and final times 
respectively and 

E(t ,  t l )  = exp - K(7, x- g(t -T)) d~ . (3) 1 [ s:, 
We define the following non-dimensional quantities : 

where A, T and 5 are the mean free path, the temperature of the gas and the 
magnitude of the molecular velocity respectively. S stands for the distance 
travelled by the molecules in phase trajectory and R is the gas constant. 

To examine the effect of the attenuation factor E(t, tl) on the behaviour of the 
distribution function F as the molecules move away from the initial boundary 
we restrict ourselves to the steady state. Noting that dt = dS/& (2) and (3) 
become 

E(SO, SO,) = exp [ - (E*/[*) (SO- SO,)], (5) 
where the subscript w denotes values at the wall and * is some average value of 
K*. Equations (4) and (5) show clearly that whatever the degree of rarefaction of 
the gas may be the distance SO- S& travelled by the molecules from the boundary 
in terms of mean free paths plays the most important role in determining the form 
of the distribution function P(S0, 5). Thus, we make the following observations. 

(i) For SO-SL < 1 

P(S0, g) = F(SL, g) - (E*/5*) [F(SL, g )  - FqsL, 9 1  (SO - 8:) + . . . . 
27-2 
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Approximate 
distribution 
function - Free-molecule limit 

FIGURE 1. A schematic sketch of the construction of the approximate velocity distribution 
function. - , exact velocity distribution function as given by (9) versus the distance 

approximate form of this velocity distribution function defined by ( lo) ,  when the correc- 
tion P is omitted. 

SO travelled by the molecules in phase trajectory from the initial boundary 8,; 0 _ _ _  

The velocity distribution function keeps essentially the form assigned to it at the 
boundary, with a slight modification proportional to (So - P,). 

1, E(Xo, 8%) dies out exponentially and so does $'(EL, 5). 
When the space point under consideration satisfies this requirement for all 
boundaries we expect the resulting distribution function to correspond to the 
Chapman-Enskog solution suitable for the continuum regime. 

(iii) Xo- X& = O( i), both terms in (4) are equally important. 
To cover this intermediary region Shen (I  963) cast (4) in the following form: 

where .I$ is the Chapman-Enskog distribution function and P is a correction 
which vanishes at both the limits XO - 8: -+ 0 and SO - -+ CO, and which Shen 
neglected, for simplicity in the calculation of the shear stress tensor and the heat 
flux vector. 

In the following, we use a different form of (6) by further imposing the condi- 
tion that not only --f 0, but also dP/dSo --f 0 as Xo + XL. We also evaluate the 
correction P .  A similar modification has already been adopted by Shen (1967) in 
bhe context of radiabive heat transfer. The additional complexity is minor, but 
the improvement of accuracy appears significant. To visualize our approximation 
let us imagine we were able to solve the Boltzmann equation and obtain the exact 
velocity distribution function for a given problem. Figure i shows schematically 
this exacb velocity distribution function as a solid line and the approximate 
distribution function we propose to construct as a dashed line, plotted against 
the distance So travelled by the molecules in phase trajectory from the initial 
boundary S t .  

(ii) For XO-Xk 

H = H w E + & ( 1 - 8 ) +  I", (6) 
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We start with (2) and try to obtain the Chapman-Enskog distribution function 
Fc for t - to > l/K. Within the framework of (l), Pc is obtained by evaluating the 
left-hand side using F(0): 

p = pco) - - - p)* 

Since 8 is defined by the local gradient of P(O) we may expand F0) in the neigh- 
bourhood of t ,  along the trajectory of the molecules: 

(7) 
l a  
K at 

a (7- t ) 2  a2 
F(0)(7) = P(@(t) + (7 - t )  - F(0) ( t )  + - - P(0) (TI), 

at 2! a t 2  

where r < T~ < t. It is worth noting thaO though the function P(O) is regular its 
derivatives at  the wall may become very large. However, as shown by Welander 
(1954), this singularity is weak and the integrated values are moderate. Using 
(8) to evaluate the integral of (2) and assuming for simplicity a single average 
collision frequency K, we get 

P(o)v, x, 5) = w o ,  x - 50 - to ) ,  5) Jw, to) + FJt, x, 5) c1 - w, t o ) ]  

+ (t - to )  d/dtP(O)(t, x, 5) E(t, t o )  + 3, (9) 

where 3 = O[(t-to)2d2/dt2117(0)(t)E(t7 to) ] .  It is easy to verify that 3 and dp /d t ,  
vanish as t - t o  + 0. To avoid Burnett-like terms of the continuum regime 
P will be omitted for all flow regimes. It is more convenient to rewrite (9) as 

w, x, P) = 8(4 x, 5) +4$, t o ;  x, P) w, t o ) ,  

-FR = F(to,x-5(t-t,),5)- E( t ,x ,5 ) -  (t--o)-P(o)(t,x,5) 

(10) 

where the 'rarefied component ' FB is then 

1 d 
(11) 

At each point of the flow M(x ,  y,x), the velocity distribution function is, in 
general, discontinuous along the conical surface subtended by the body (figure 2). 
This surface of discontinuity divides the velocity space into two semi-spaces A 
and B. Then, the distribution function of molecules whose velocity 5 E A is 

[ at 

w, x, P) = m t ,  x, 5) +Pi&, t w ;  x, 5) E(t, t w ) ,  (12) 

where t ,  is the time at which these molecules left the surface of the body. Whereas, 
for those molecules whose velocity is 5 E B, the corresponding ( t  - to) is very large, 
and we simply have 

It may be emphasized that our answer is not meant to be an approximation 
of the BGK model, in spite of the presence of the collision frequency K .  Note, 
for example, the insertion of F, to replace iCs counterpart in the BGK version. 

(13) w, x, 5) = w, x7 5). 

3. Derivation of hydrodynamic equations for external rarefied flows 
We define the average value (Q)  of any molecular property Q(5) by 
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\- - 71 A\- ---_ --_ 

FIGURE 2. The conical surface of discontinuity in the phase space. 

where the integration is carried over all the phase space and n(t, x) is the mole- 
cular density of the gas defined by (14) when &({) = 1. Substituting the expression 
for F(t, x, {) given by (12) and (13) into ( la) ,  we get, after rearrangement, 

n(t, X) (Q> = J m t ,  X) F) a{) d5 
Call phasespace 

PRV, x, 5) &(5) Jw, t,) d5. (15) +s gsemi-phase space.4 

The first integral of (15) will give the Navier-Stokes value of n(t, x) (Q)7 which 
we denote by do) (t, x) QC, where nco)(t, x) is a normalizing factor and has the 
significance of a partial density. The last integral in (15) defines a complementary 
value for n(t, x) (Q), which we denote by d0) ( t7  x) Qn. Hence (15) may be written 

(16) as 

Equation (16) states that the mean value of any molecular property Q({)  is 
the sum of the continuum Navier-Stokes value plus a term due to rarefaction. 
Note that in Q R  both %he geometric 'shadow effect ' and the dynamical collision 
frequency consequences are approximately accounted for by using (15). 

It is obvious that the collision integral of the Boltzmann equation is not, in 
general, conservative for the five summational invariants when the distribution 
functions defined by (12) and (13) are used. A mixed method is thus used. The 
equations of change of molecular properties, when these are the five summational 
invariants m, m& and &n.& &, are derived by the use of the unknown exact solu- 
tion of the Boltzmann equation (see Chapman & Cowling 1964, pp. 51, 52). 
Only the components pZi of the stress Oensor and qi of the heat flux vector as well 
as the boundary conditions at the body required for the solution of these equations 

n(t, X) (&) = nco) (t ,  X) [Qc(k X) + & A t ,  x)l. 
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are calculated from (15) by giving to Q ( x )  the appropriate values. Thus, we arrive 
at the following generalized hydrodynamic equations : 

Dn aui 
Dt axi -+n- = 0, I 

where D/Dt = a/at + ui a/ax,, and ui and T are the gas velocity and temperature 
respectively. ( P,j)c is the continuum stress tensor given by the Navier-Stokes 
relationships and is the continuum heat flux vector given by Fourier's law: 

(g,)o = - k aqax,, J 
where P = nRT is the scalar pressure, Sij is the Kronecker delta and ,u and k 
are the coefficients of viscosity and thermal conductivity respectively. Finally, 
( p i j ) R  and (a)R are the complementary parts of the stress tensor and heat flux 
vector due to rarefaction effects: 

n \ 

We note that the five partial differential equations forming the system (17)  
contain in addition to the usual five hydrodynamic unknown functions, n, ui 
and T ,  the partial density function n(0) associated with the Chapman-Enskog 
distribution function Fc, and the velocity a t  the wall n,. An additional equation 
is then needed. This equation is obtained by putting Q = 1 in (15): 

P 

n(t, x) = do) (t, x) + E(t, tw) FR(t, x, 5) de. J g E a  

The boundary conditions required to solve (17) and determine the value of nw 
are obtained by using (15) to calculate the gas velocity and temperature at  the 

where the subscript gw denotes the condition of the gas at  the wall. The condition 
of an impermeable wall and the slip velocity can be immediately deduced from 
(21) by introducing the geometry of the body. Finally, our equations depend on 
the collision frequency K.  From dimensional considerations, it appears that 

where a is a numerical parameter. The value assigned to a might depend on 
additional considerations discussed by Shen (1966). For example, a could be 

K = aP/p, (22) 
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chosen to minimize the discrepancy on a least-square basis between the gas vari- 
ables obtained from the theory and the corresponding averages calculated from 
(15). Such refinements need further investigation. Here, for simplicity, we assume 
that a! lies between $ and 1, from the well-known behaviour of the BGK model. 

The generalized hydrodynamic equations thus arrived at are basically of the 
Navier-Stokes type since (&i)R and contain no more than the first deri- 
vatives of the macroscopic variables. Another essential feature of these equations 
is that they give a unified description of external rarefied flows at all Knudsen 
numbers and contain the two extreme Navier-Stokes and free-molecule limits. 
Thus they constitute the counterpart of the Navier-Stokes equations for ex- 
ternal rarefied gas flows. This makes the treatment of a rarefied problem similar 
to, though more difficult than, the corresponding continuum one. In  particular, 
continuum analytical solutions and computational procedures can be used as 
guidelines when dealing with our equations. These advantages will be illustrated 
in the following section for low-speed two-dimensional flows. 

4. The governing equations for a low-speed two-dimensional flow 
For an infinite cylinder of finite cross-section, we set up a cylindrical polar 

co-ordinate system centred on an axis parallel bo the elements of the cylinder, the 
radial co-ordinate is being r and the polar angle 8. We restrict ourselves to a small 
molecular speed ratio, S, = U,/(2RT,)B < 1, and to a small temperature differ- 
ence, (T, - T,)/T, < 1. The subscripts cg and w denote the free-stream and wall 
conditions respectively. We then linearize the distribution function Fn with 
respect to the Maxwellian at infinity and consider only first-order terms in 8, 
and (Tw - T,)/T,. The collision frequency is taken to be K = aPm/pm. Further- 
more, we choose a length h of the order of the mean free path as 

h = a(2RTm)*/K. (23) 

h = (2S,/Re) rl, (24) 

R e  = n, u, rl/ru, 

Kn = Air, = 28,lRe. 

This identifies a! with K* and leads after some rearrangement to 

where rl is some characteristic length of the directrix of the cylinder, and 

is bhe Reynolds number. We then define the Knudsen number as 

(25)  
Finally, we get the following linearized expression for FR: 

+x, l+a- c; 2---COS2q4+2 (Er -+---- r!, %* ::) cos 4 sin 9 ( Z){  [ 2: 
+-p, 2 ( x + u * )  av* sin241 

i aP 
r o  ae cos 4 + - - sin $)]I + O(S$), (26 )  

2 Y  1 
5 y-  1 PrS, 
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X 

____c 

FIGURE 3. Geometrical configuration in the cross-sectional plane of the cylinder. 5, is 
the projection of the molecular velocity and 9 is the polar angle in the phase space. The 
angles dol and define the planes that delimit the semi-space A.  

where u* = u/Um and v* = vIU, are the normalized gas velocity components 
in the cylindrical co-ordinate system, c! = t/(BRT,)*is the normalized molecular 
velocity, # stands for the polar angle in the phase space shown on figure 3, C, and 
S; are the projections of C and So on the r, 8 plane and ro = r/h. The quantities 
+iW, Ti@), 5? and are the perturbation values defined by 

Finally, Pr and y represent the Prandtl number and the specific heat ratio 
respectively. 

The complementary elements of the stress tensor (ei)R and heat flux vector 
( Q i ) R  are then calculated from (19) after linearization with respect to the flow 
velocity ui and substitution of FR by its linearized expression (26 ) .  By introduc- 
ing the dimensionless quantities 

we get after some rearrangement 
ei = - P,r/2n, RTm, & = ~i/nwRT,(2RT,)~,  ( 2 8 )  

prr = G320(Ww-5(0)) + (G52l)-G320) ( ~ w - ~ ) - 2 S ~ ( G ~ 3 o u * + G ~ 2 1 ~ * )  
a%* av* i a%* 1 av* 

-I 2 f l ~  k 5 4 0  -g -4- (2 i- 7 a8 -$)L531 +L522 ($ +p x)] 



Similarly the additional equation for the density is calculated from (20) : 

Glo,(~w - %(O)) + (Gao0 - GI,,,) (Tw- p )  - 2S,(G,,0u* + G2,,v*) 

au* av* 1 au* V* u* 1 av* 
+ 2 S ~ [ L , 2 0 ~ + ( @ + p ~ - 7  ) L311+L302 (7 +;.=)I 

where 

The angles +ol and $02 are those delimiting the semi-space A as shown in figure 3. 
The functions Gij, and Lijk depend, in general, on the two space variables r and 8. 
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The boundary conditions at the wall likewise follow from (21): 

3 au* av* i au* (;;+r;;;)l +-sw x -$ -+---- s21+s12 - -- , 
4 JT [ 30 aro ( ~ Y O  ro a8 

(38) 
1 1 s, (5 - iP)) 8, v* = - so, ( f iw -a@)) + - so l (Tw-P) - -  (xllu*+so2v*) 4477 SZ/T 77 

3 -fi~~~)+-soo(Tw-P)-2s, 47f (81,u*+801v*)] 

where all the quantities take the values for the gas at the wall, and 

where Q,wl and 4w2 are the limits of q501 and do2 respectively as the space point M 
tends to the surface of the cylinder. These angles are easily obtained from the 
geometry of the body. Let r = g(8) be the equation ofthe directrix of the cylinder, 
then (pwz = arc tan (g(8)/g'(@) and rpZol = q5w2-n. Finally, let (ul ,  u2) and ( T ~ , T ~ )  

be the components in the polar co-ordinate system (r ,  8) of the unit vectors normal 
and tangential to the directrix of the cylinder respectively. Then the conservation 
of mass at an impermeable wall yields 

vlu*+ v2v* = 0. (42) 

This equation will serve to determine the density at the wall +iW, while (40) and 
the linear combination T ~ U *  + r2 v* of (38) and (39) will provide the jump and slip 
conditions at the wall, respectively. 

As in the continuum regime, the convective terms in (17) may also be linear- 
ized with respect to S,. The linearized system thus obtained will provide us with 
the solution for the limiting case of vanishing Mach number. In  connexion with 
this there is the interesting question of when and in what sense a rarefied gas may 
be treated as incompressible. It seems, then, reasonable to follow the same pro- 
cedure as in the continuum regime and to rewrite the full system of equations 
(17) in a non-dimensional form and order the terms in 8,. However, we have an 
additional difficulty in finding the proper length unit since the rarefied terms 
depend at the same time on two fundamental lengths: the characteristic geometric 
length rl and the mean free path A. For a given point a t  a distance r from the 
cylinder, and (cjJR depend on the solid angle delimiting the semi-space A ,  
and thus on rl/r. On the other hand, the exponential attenuation factor E 
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depends on the distance travelled by the molecules in terms of mean free paths, 
Slh. So we shall discuss three cases according to the order of the Knudsen num- 
ber. 

(i) If Km = O( 1), this also means that S,  = O(Re).  The proper length unit is 
the mean free path. If we further choose 

as new variables and note that Pa/(,uUm/h) = l/Sm, then equations (17) become 

D au; 
-%+ (1 +%) - 
DtO ax: 

D a 
DP 7 axi 

2s,(1+a)-u*--[(P:j)c+(P~j),] 

S ,  D - a@ i a 
y-  1 DtO -- T-S&[(P&),+(Po.) a7 I T + -  axi y - 1 -- 2 ~ r  ax; [(&+ (&El 

= 0, (44) 

= = O I  0, 

where 

When S ,  -+ 0, the leading terms in the energy equation are the conduction terms 

a 
- ax; [ ( a h +  (&)El = O(X2,). (45) 

The choice of the new variables defined by (43) will not, in general, be possible 
because of the density and temperature terms in the expressions of (P:j)R and 
(q:)R, unless these terms are also of order S,. This is determined by the boundary 
conditions at  the wall. When we have an isothermal wall (T, = T,) or an adia- 
batic wall (a, = 0) ,  then it can be seen from (45) and the expressions for the heat 
flux vector and the boundary conditions that 

P = O(S,), a@) = O(S,). (46) 

This shows that for a rarefied gas flow over an isothermal or adiabatic body com- 
pressibility effects are of the order of the Mach number, whereas they are of 
O(M2)  in the continuum case. This remarkable result for rarefied gas flows comes 
from the departure of the local velocity distribution function from the Maxwel- 
lian equilibrium. Its effect is maximum at the wall and is responsible for the 
temperature jump and velocity slip. 

(ii) For K n  < 1, the rarefaction effects are limited to a thin layer called the 
Knudsen layer. When T, = T, or 9, = 0, outside the Knudsen layer we have 
V%?’ = O(X2,). Within the Knudsen layer, we can get a fast estimate of the order 
of 5? if, at a given point of the surface of the cylinder, the co-ordinates (r ,  0) are 
centred at  its centre of curvature. The basic form of (29)-(40) would be the same, 
with u* and v* being the normal and tangential velocities. Then, from (38) we 
see that the jump temperature [PIJ = O(S,Knv*). Since the slip velocity v* is 
O(Kn) we conclude that 5? = O(X,Kn2). The order of 5? will then be the larger of 



A uni$ed kinetic theory. Part 1 429 

S z  and S,  Kn2. On the other hand, the variations of the pressure and density are 
of order 

-- pUm/rl - Kn 8,. 
n,RTm 

(iii) For K n  9 I, the body appears as a singular point in (44). These equations 
should only describe the far field. Near the body, we have ratiher a slightly per- 
turbed free-molecule flow and the compressibility effects are of O(S,) for a nearly 
isothermal or adiabatic body. 

It should be pointed out that, though the above discussion, for simplicity, was 
based on the linearized expressions for (QR and ( c & ) ~  for two-dimensional flows, 
the conclusions are equally valid for three-dimensional flows. 

In  view of the above results, for a nearly isothermal or adiabatic wall and as a 
first approximation to O(S,), equations (44) are reduced to 

These equations are the counkerpart of the Stokes equations in the continuum 
regime. However, the approximation which led to (47) is not uniformly valid. 
When K n  2 O( I), which also means that Re < I ,  the non-uniformity arises in the 
far field. As in the continuum regime, this is because at  large distance from the 
body the proper length unit is the viscous length v/U, and no longer the geometric 
length rl or the mean free path A. In fact, if v/U, is taken as a length unit and we 
note that A/( v/U,) = 2Sm, then it becomes obvious that the convective terms in 
the momentum equations can no longer be neglected. For Kn < 1, equations (47) 
describe the flow only within the thin Knudsen layer. Outside this layer, they tend 
to the Stokes equations. The only difference then from the continuum regime is 
that the inner boundary conditions are modified to O(Kn) by the slip velocity. 
Consequently, the results of the continuum regime analysis (see Lagerstrom 
1964, Van Dyke 1964) apply entirely to the case of a small Knudsen number. We 
then conclude that outside the Knudsen layer our linearization procedure is only 
valid for small Reynolds numbers. Besides, for two-dimensional flows, the solu- 
tions of the Stokes equations are non-uniform at infinity. We have then to resort 
to a matching procedure with outer solutions obtained from the Oseen equation. 

This non-uniformity at large distance from the body is equally present in the 
solutions of the linearized Boltzmann equation. Cercignani (1969) discussed this 
problem and concluded that, in particular for two-dimensional flows, there is 
no uniform solution to the distribution function. However, the incompressible 
form of the continuity equation is uniformly valid in the plane and we can intro- 
duce a stream function $ defined by 

u = ( l l r )  @o, v = -ykr. (48) 

Only one governing equation is obtained by introducing (48) into (44), and after 
returning to the physical variables we have 
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where 

Solutions of (49) will depend on the Knudsen number. In  part 2 of this paper we 
shall develop analytical solutions to (49) for near-continuum and nearly free- 
molecule flows past a circular cylinder. For Knudsen numbers of order unity a 
finite-difference numerical solution is being developed by Atassi. However, the 
great advantage of our formulation is that all flow regimes are described by 
equation (as), which is basically similar to the classical Navier-Stokes equation 
and can be solved within the same numerical framework. 

5. Concluding remarks 
The theory we have formulated for external rarefied gas flows leads to a system 

of partial differential equations of the Navier-Stokes type. Our approach is not 
rigorously derived from the Boltzmann equation. Accordingly we do not expect 
t o  reproduce the large amount of details of the two-body interaction contained in 
the collision integral of that equation. However, to  aerodynamicists, the main 
interest in solving an external flow problem is to determine such quantities as 
the drag and heat-transfer rate and to obtain a sufficiently accurate description 
of the flow pattern over the body for further use in design. These are not likely to 
be significantly influenced by such fine details. 

Our concern is now to show through applications the accuracy of our theory 
and the relative simplification brought about by our formulation. The effect 
of neglecting the term P in (9) is to make the distribution function F an inter- 
polation between the nearly free-molecule and near-continuum regimes which 
retains only the qualitative and average properties of the true distribution 
functions. However, because of the contact conditions imposed on P at both 
limits, we expect our theory to reproduce, at least to a first order, these two asymp- 
totic regimes. This will be shown in part 2 of this paper to be true for a low-speed 
flow over a circular cylinder. On the other hand, our equations of the Navier- 
Stokes type have the interesting property of making the rarefied problem the 
counterpart of the continuum one. Thus we can adapt and use the various ana- 
lytical and numerical methods and techniques developed for handling the Navier- 
Stokes equations to solve external rarefied problems. From this viewpoint, our 
analytical treatment of a low-speed rarefied flow past a circular cylinder will 
appear as an extension to the classical work of Proudman & Pearson (1957). In  
the transition regime, where only numerical solutions are possible, our equations 
can be solved within the same numerical framework developed for the Navier- 
Stokes equations; the introduction of the complementary rarefied terms is not 
expected to change, basically, the computational procedure. 
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